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Dials—Alder cycloaddition is recognized as one of the most
valuable reactions in organic syntheki$jt is widely applicable
to a variety of dienophiles such as olefins, alkynes, aldehydes,
ketones, imined\-acylimines, and nitroso compounts$. Most
of these dienophiles do not require an activating group to achieve
cycloadditions under ambient conditions. Cycloadditions of
organic dienes with unactivated nitriles proceed only with extreme
difficulty except with prolonged heating at high temperatures
(>350°C) to afford pyridine exclusively. Under such conditions,
intermolecular Diels-Alder cycloaddition of organic dienes
becomes a serious problem. Only highly electron-deficient nitriles
such as TsCN and NCGR appear to be good dienophiles at
ambient condition$. Cobalt catalyst CpCo(COB)(COD =
cyclooctadiene) effects the cycloaddition of alkoxydiene with
TsCN to give a good yield of pyridines at 3C (eq 1 of Scheme
1), but the reaction fails to proceed with common aliphatic and
aryl nitriles. [4 + 2] Cycloaddition of unactivated nitriles at
ambient conditions remains a challenging issue in synthetic
organic chemistry.

The furopyridine functionality has emerged as a useful phar-
macophore in several therapeutic areas including treatment of skin
disease and relief of intraoccular pressure among ofriér#\
straightforward synthesis of this functionality via cyano4?]
cycloaddition is prohibited by kinetic instability of intermediate
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B that forms pyridine with cleavage of the-© bond (egs 1 and

2 of Scheme 15° In this paper, we report a remarkably feasible
cyano [4+ 2] cycloaddition at 23°C and its application to
synthesis of furopyridines. Most importantly this reaction is
applicable to unactivated nitriles in both inter- and intramolecular
fashions.

Shown in Scheme 2 (eq 1) is the general synthetic protocol
for the starting tungsten!-dienes1—5 involving the cycloalk-
enatiod! of tungsten-alkynols with RCH,CHO, followed by
deprotonation of the resulting tungsteoxacarbeniumC with
excess EN; the yields of1-5 exceeded 87%. Further use of
these dienes to achieve a cyanoi{42] cycloaddition at 23C
are illustrated in Scheme 2. A variety of unactivated nitriles are
applicable to the reactions including aliphatic nitriles RCN=R
Et, Pf) and benzonitrile that are used as reaction solvents (entries
1-5). Inentries 1 and 2, the reaction is activated by eithes-Me
NO-2H,0 (5.0 equiv) or by photolysisi(= 300 nm); the former
was more effective to yield furopyridin€sin a better yield (58%).
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a(i) 23 °C, 70 h; (ii) MeNO-2H,0 (5.0 equiv), 23°C (12 h); (iii)
MesNO-2H,0 (5.0 equiv), CHClIy, reflux, 20 h.

The cycloaddition also effects the synthesis of disubstituted
pyridine 9 in 47% yield (entry 5). We also prepared tungsten- Figure 1. ORTEP drawing of tungstenr-azaallyl complext3 and its
n*-dienes 4 and 5 bearing a tethered nitrile to realize an pertinent distances (A): WC(3)= 2.321(6), W-N = 2.140(5), W-C(3)
intramolecular [4+ 2] cycloaddition reaction. Heating and5 = 2.321(6), C(3rN = 1.399(8), C(7y-N = 1.374(7), C(5)-C(6) =
with MesNO-2H,0 (5.0 equiv) in refluxing CHCl, for 12 h 1.314(8).
afforded tricyclic furopyridined0and11in 50% and 77% yields,
respectively.

One question remaining here is the loss of tungsten fragment  w'_o_ . ¢ M n O P ~Wa O by
during furopyridine syntheses. Thus, we sought to isolate the ©¢ /JJ RC= N A A TR M(J
key organometallic intermediates to ensure a cyanor[42] Me 12 N D vl E
cycloaddition pathway. The attempts are successful with selection w ' =cpwico), . ) L
of suitably sized Rand R’ on the reactants as depicted in Scheme w W
3. Photolysis of compounti2 (1 = 300 nm) in CHCN at 23°C R-Ne O py ROy R fji))’ Ph
afforded tungstens-2-azaallyl complexl3 as a single diastere- w v w Z
omer in 27% yield in addition to furopyridin#4 (55%). The Me ’ e F
lack of other stereoisomers 8 is probably due to their kinetic 4. We envision that tungsterdiene12 is required to lose a CO
instabilities, easily forming furopyridines. Similarly, treatment group to uptake a RCN group to initiate the reaction; the
of compound2 with MesNO-H,0O (5.0 equiv) in isobutyronitrile  coordinated nitrile oD is reactive toward inter- or intramolecular
(23 °C, 12 h) produced tungstem-azaallyl 15 as a mixture of attack of nucleophile¥. Under nitrile coordination, the CpW-
cis and trans isomers (trans/cis 3/1) in 45% vyield; the  (CO), fragment promotes an intramolecular attack of the diene
furopyridine 16 was obtained in 30% yield. Separation of the =CHR carbon at the nitrile carbon through donation of its
cis/trans isomers of5 was conducted on a cold florisil column  d-electrons, forming a seven-membered heterocycle like tungsten
(=20 °C). Heating ther-allyl complexesl3 and 15 with Mes- carbeneE that is stabilized by the furan oxygen. A subsequent
NO-2H,0 (5.0 equiv) in refluxing CHCI, for 72 h afforded the  insertion of the single W-N bond of E into its W=C carbene
furopyridines14 and16in 85% and 87% yields, respectively. A carbon generates the 16e Diellder adductF, further yielding
tricyclic tungster-azaallyl speciesl8 was also obtained as a  g-azaallyl complex via coordination of tungsten to the less
single diastereomer in 71% yield through an intramolecular cyano hindered &N bond. Although only one literature paper is
[4 + 2] cycloaddition of tungster?-dienel17 (eq 3 of Scheme  reported for insertion of the MN bond into M=C group®s we
3). The molecular structures of compoufh8 and the cis and  cannot exclude its role here. A concerted{£2] cycloadditiort
trans isomers ofl5 were determined by an X-ray diffraction  petween a coordinated nitrile andj&diene moiety is unlikely
study!?1® The ORTEP drawing ofl3 (Figure 1) reveals that  to occur because of their unfavorable orientations for orbital
CpW(COy) fragment is bound to the furopyridine moiety in a overlap.
n-2-azaallyl fashion with the WC(3) [2.321(6) A], W-N In summary, we disclose here a facile $42] cycloaddition
[2.140(5) A], and W-C(7) [2.307(6) A] distances; the C(5) of aliphatic and aryl nitriles in both inter- and intramolecular
C(6) length [1.314(8) A] represents a-C double bond. The  systems; the examples are highlighted by their application to
phenyl and methyl groups ol3 are in the cis and trans  synthesis of furopyridines. The organometallic principles in this
orientations, respectively, relative to tungsten fragment. cycloaddition are helpful to design a metal-catalyzed synthesis

The highly feasible [4+ 2] cycloadditions of unactivated of pyridines from common aliphatic nitriles. Studies in this
nitriles are expected to be closely associated with the role of the direction are in progress.
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